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Maximal deformation of an impacting drop
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We first study the impact of a liquid drop of low viscosity on a super-hydrophobic
surface. Denoting the drop size and speed as D0 and U0, we find that the maximal
spreading Dmax scales as D0We1/4 where We is the Weber number associated with the
shock (We ≡ ρU 2

0 D0/σ , where ρ and σ are the liquid density and surface tension).
This law is also observed to hold on partially wettable surfaces, provided that liquids
of low viscosity (such as water) are used. The law is interpreted as resulting from
the effective acceleration experienced by the drop during its impact. Viscous drops
are also analysed, allowing us to propose a criterion for predicting if the spreading is
limited by capillarity, or by viscosity.

1. Introduction: bouncing drops
Texturing a hydrophobic material (such as a wax) makes it super-hydrophobic, i.e.

provides a contact angle for water as high as 160◦ to 170◦ (Onda et al. 1996). This effect
is primarily due to the presence of air remaining on the solid as a drop is deposited,
which increases dramatically the contact angle and decreases the adhesion of the
liquid to its substrate. This has an amusing consequence, of practical importance: the
impact of a water drop on such a substrate can be followed by a rebound (Hartley &
Brunskill 1958). The restitution coefficient of the shock can be very large (around 0.9),
so that a drop can bounce many times before stopping (Richard & Quéré 2000). On
a super-hydrophobic plant such as the lotus, where the leaves are tilted, this provides
a very efficient way to remove the rain, as the drops are scattered onto the ground.

Our first aim here is to describe more precisely the shock, using a high-speed
video camera. We examine how the drop deforms during impact, as a function of the
drop velocity, size and viscosity. A rebound is possible because the kinetic energy of
the impinging (non-viscous) drop can be stored in deformation during the impact.
Thus, a natural parameter to be considered is the so-called Weber number We, which
compares kinetic and surface energy. For a drop of diameter D0, a liquid of surface
tension σ and density ρ, and an impact velocity U0, the Weber number is

We =
ρU 2

0 D0

σ
. (1.1)

For Weber numbers smaller than unity, the deformation is small: the drop is ellipsoidal
during the contact (Richard & Quéré 2000; Okumura et al. 2003). For We larger
than 1, the situation is quite different, as can be observed in figure 1.
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Figure 1. Impact of a water drop (D0 = 2.5 mm, U0 = 0.83m s−1) on a super-hydrophobic
surface. Time interval between the pictures: 2.7 ms.

The snapshots display the impact of a water drop (D0 = 2.5 mm) on a solid (on
which the static contact angle is 170◦) at a speed U0 = 0.83 m s−1, which yields
We= 24. The second picture of the series shows the (spherical) drop just at impact,
which defines t =0. Picture 3 is taken at t =2.7 ms, and indicates that the drop is
flattened as it reaches its maximal extension Dmax ≈ 2D0. Then, it retracts and takes
off (picture 7), at t = τ =13.5 ms. The drop is not spherical at that moment, so that
it oscillates once in the air (which is mainly responsible for a restitution coefficient
smaller than unity) (Richard & Quéré 2000). Note also that the contact angle during
the contact (t < τ ) remains close to its maximal value π.

The contact time has been studied (Richard, Clanet & Quéré 2002; Okumura et al.

2003) and shown to scale as
√

ρD3
0/σ . This variation, independent of the impact

velocity U0, can be understood by considering (globally) the rebound as an oscillation:
the drop is a spring of stiffness σ and mass ρD3

0 , which oscillates with a constant

period
√

ρD3
0/σ .

Our aim here is to describe the size of the puddle formed at the maximal extension,
Dmax. We first measure the maximal deformation of the impinging drop, and examine
our results using scaling arguments. More generally, we discuss the characteristics
of a drop experiencing an acceleration γ . Then, we show whether our results are
modified when considering impacts on more common surfaces, and with more viscous
liquids.
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Figure 2. Maximum diameter of the spreading drop (deduced from photos such as displayed
in figure 1), normalized by the drop radius, as a function of the Weber number. The open
squares are obtained with water, and the filled ones with mercury. The solid line indicates the
slope 1/4.

2. Maximal deformation on a super-hydrophobic surface
2.1. Impacting drops

The maximum diameter Dmax was measured for water and mercury drops hitting a
super-hydrophobic substrate. This quantity was observed to increase with both the
drop radius and the impact speed. All the data were found to collapse on a single
curve, when plotting Dmax/D0 as a function of the Weber number, as shown in figure 2.
In logarithmic scales, the data are well fitted by a straight line of slope 0.27 ± 0.02,
suggesting that Dmax scales as We1/4, and thus as U

1/2
0 .

This behaviour is very different from that reported up to now. The most classical
proposition is that the kinetic energy of the impinging drop (of the order of ρD3

0U
2
0 ) is

dissipated by viscosity during the impact (the associated energy dissipation scales as
η(U0/h)D3

max, h being the thickness of the maximal drop). Together with volume
conservation (hD2

max ∼ D3
0), this yields Dmax ∼ D0Re1/5, introducing the Reynolds

number Re ≡ ρD0U0/η (Chandra & Avedisian 1991; Rein 1993). The maximum dia-
meter thus increases as U

1/5
0 , a much smaller dependence than the one reported here.

Hence our results raise the question of the validity of this kind of model in the limit
of liquids of low viscosity considered here.

On the other hand, in such a limit, and with super-hydrophobic substrates which
also contribute to minimize viscous dissipation (because of a very high contact angle),
we could expect a pure transfer of kinetic energy into surface energy (Richard et al.
2002), an idea strengthened by the existence of rebounds. In the limit of large Weber
numbers (for which we can neglect the surface area of the drop edge), this energy
conservation is simply ρD3

0U
2
0 ∼ σD2

max. This yields Dmax ∼ D0We1/2 (Dmax ∼ U0), which
clearly is not the law obeyed by the data (in particular at large We, as assumed above).

In a stage of maximal deformation, the drop is flattened, and looks like a small-
scale model of a gravity puddle, made by pouring a large water drop onto a wax
surface. More precisely, this shape is observed if gravity overcomes surface tension,



202 C. Clanet, C. Béguin, D. Richard and D. Quéré

i.e. if the drop is larger than the capillary length a ≡
√

σ/(ρg) (in practice a is 2.7 mm
for water and 1.9 mm for mercury). Since the shape of the puddle results from a
balance between gravity and surface forces, its thickness necessarily scales as a, the
prefactor being a monotonic function of the contact angle (Taylor & Michael 1973).
The idea here is that the velocity of a drop hitting a solid decreases from U0 to 0, in
a crashing time τ � of the order of D0/U0. Thus the typical acceleration γ experienced
by the drop as it stops scales as U 2

0 /D0, which in our experiments (U0 ∼ 1 m s−1 and
D0 ∼ 1 mm) is commonly about 100 times larger than g. The thickness of a puddle in
this reinforced gravity field should scale as a� =

√
σ/(ργ ). With γ ∼ U 2

0 /D0, and using
volume conservation, we deduce a maximum diameter:

Dmax ∼ D0We1/4 (2.1)

in good agreement with the data in figure 2, where (2.1) is as a solid line (with a
numerical coefficient equal to 0.9).

This dynamic argument allows us to understand the special shape of a drop as it
stops after an impact (it forms a puddle because of an effective gravity field U 2

0 /D0),
and the resulting scaling law for the maximal spreading. It also implies that a drop
smaller than a� should not form a puddle: then, surface forces dominate ‘gravity’
forces, so that the drop should be closer to a sphere. The condition D0 <a� implies
We< 1, and we stress that a drop in this regime indeed forms an ellipsoid during the
shock (Richard & Quéré 2000). Note also that (2.1) can only hold if the crashing time
τ � ∼ D0/U0 is smaller than the contact time τ of the drop, which was shown to scale

as
√

ρD3
0/σ . This imposes (again) the condition that the Weber number be larger

than unity. In addition, for 2 <We< 900 we checked that the maximal spreading
is indeed reached in a time which scales as D0/U0 (with a numerical coefficient of
0.6 ± 0.1).

Let us finally emphasize that the scaling in (2.1) is compatible with Euler’s equation.
Written dimensionally, this equation expresses the balance of an acceleration (of the
order of ρU0/τ

�, that is, ρU 2
0 /D0) with a pressure gradient, which is in that case

the Laplace pressure gradient tending to restore a spherical drop (and thus scaling
as σ/h2, with h the puddle thickness) (Okumura et al. 2003). Together with volume
conservation, this balance yields (2.1).

2.2. Drops on a lift

Our interpretation can be tested by considering (more generally) the shape of a drop
experiencing an imposed acceleration γ . This can be achieved using a lift: a spherical
drop is deposited on a super-hydrophobic plate (where it is quasi-spherical), and the
whole device is suddenly accelerated upwards. Our lift consists of a spring initially
compressed, as sketched in figure 3. At t =0, the hook G is removed, and the drop
is moved upward. An example of lift trajectory is presented in figure 3(c). Using a
parabolic fit, we observe that the acceleration is quasi-constant and equal to 120 m s−2

over the first 18 ms. The deformation obtained with this spring for a drop of diameter
D0 = 3.1 mm is displayed in figure 4. As for the impact, the drop flattens, reaches
a maximal extent Dmax ≈ 1.7D0 (picture 6) prior to retraction. In this example, the
drop reaches its maximal extension at t ≈ 7 ms, that is within the range of constant
acceleration. This was the case for all the experiments reported.

The relative deformation Dmax/D0 of water drops of various diameters and for
accelerations between γ =93 and 580 m s−2 is plotted in figure 5, as a function of the
dimensionless acceleration ργD2

0/σ . The data follow a scaling law similar to the one
in figure 2, which yields Dmax ∼ D0 (ργD2

0/σ )1/4. A close comparison with the data in
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Figure 3. (a) Sketch of the lift used to study the deformation of a drop experiencing a
constant acceleration γ larger than the gravitational acceleration. The upper plate is a
super-hydrophobic material. (b) At time t = 0, the hook G is removed, and the spring suddenly
loses its tension. The whole experiment is filmed with a high-speed camera, allowing us to
measure γ and the drop deformation. (c) Example of lift trajectory (�) corresponding to the
experiment reported in figure 4. The dashed line corresponds to the fit z =60t2, that is to an
acceleration of 120 m s−2.
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Figure 4. Deformation of a water drop (of diameter D0 = 3.1mm) sitting on a super-
hydrophobic plate, and subjected to a constant acceleration γ = 120m s−2. The time interval
between the pictures is 1.6 ms.

figure 2, shows that the drop indeed undergoes the same relative deformation in both
experiments provided that the acceleration of the lift is chosen such that γ ∼ U 2

0 /D0.

2.3. Energy conservation

The maximal deformation of an impacting drop in the capillary regime was found to
scale as We1/4, which implies (for We> 1) an extension smaller than given by energy
conservation (then, Dmax increases as We1/2). Thus kinetic energy is not purely trans-
formed to surface energy during the shock, which raises the question where the missing
energy is stored (which is all the larger since We is high). To answer this question, we
tried to visualize the flow inside the drop during the impact. Observations were very
difficult to interpret with such small systems as millimetric drops, and we considered
balloons filled with water, in order to enlarge the system. Provided that the exper-
imental conditions were carefully chosen, the shock of the balloon (D0 = 31.5mm,
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Figure 5. Relative deformation Dmax/D0 of a water drop in a lift, as a function of the
dimensionless lift acceleration ργD2

0/σ . The scales are the same as in figure 2, and the solid
line indicates the slope 1/4.
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Figure 6. (a) Impact of a water drop (D0 = 2.9 mm, U0 = 1m s−1, σ = 0.07 kg s−2). (b) Impact
of a balloon filled with water (D0 = 31.5 mm, U0 = 14.47m s−1, σ =85kg s−2). For these
parameters, the shock is observed to be the same. (c) Sketch of the vortical motion revealed
by the presence of tracers inside the balloon.

U0 = 14.5 m s−1 and σ ≈ 85 kg s−2†) was found to be very close to the one observed with
a water drop (D0 = 2.9mm, U0 = 1 m s−1 and σ ≈ 0.072 kg s−2), as shown in figures 6(a)
and 6(b).

† As shown in Richard & Quéré (2000), an equivalent surface tension for a balloon can be
deduced from the static deformation of the balloon under a known compression.
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Figure 7. Impact of a water drop (D0 = 3.3 mm, U0 = 0.81m s−1) on a plastic that it wets only
partially (advancing and receding angles of 92 ± 2◦ and 23 ± 2◦). The drop retracts but does
not bounce. Time interval between the pictures 2.2 ms.

A rubber balloon can be transparent, and use of tracers reveals internal motion
during the shock. These motions were found to be vortical, as sketched in figure 6(c),
and observed as the balloon reaches its maximal extension. Thus, the kinetic energy
is not only transformed to surface energy, but also to internal kinetic energy, which
might help in understanding why a simple energy conservation does not hold.

3. Remarks
3.1. Influence of the surface

A drop hitting a surface first spreads inertially, whatever the nature of the surface. For
liquids of low viscosity (such as water), it is thus tempting to test (2.1) on substrates
which are not super-hydrophobic. An example of a water drop impact on plastic is
displayed in figure 7. Then, the wetting is only partial with an advancing angle of
92 ± 2◦, and a receding one of 23 ± 2◦. The drop diameter is D0 = 3.3mm and the
impact speed U0 = 0.81 m s−1.

The drop reaches maximal extension Dmax ≈ 2.1D0 in picture 5. It does not bounce,
and its shape in the receding stage (pictures 6 to 9) is clearly different from those
in the super-hydrophobic case (figure 1). Nevertheless, the maximal extension is also
found to obey (2.1), as shown in figure 8(a) where our data on plastic (filled squares)
are superimposed on the data obtained on a super-hydrophobic plate (open squares).
This can be confirmed by including in figure 8(a) the maximal extension of a water
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Figure 8. (a) Comparison between the relative deformation of a water drop impacting a
super-hydrophobic surface (�) and a partially wettable surface (�). Also shown are data
obtained by Stow & Hadfield (1981) for water impacting a smooth aluminium plate (�), and
by Marmanis & Thoroddsen (1996) for water impacting thick linen paper (�). All the data
are found to be superimposed, and to be described by (2.1). (b) Comparison between the
results obtained with water (or mercury), and described by (2.1) (solid line), and data obtained
with a drop of silicone oil of viscosity η = 300mPa s impacting a smooth plastic surface. The
deformation of the drop is found to be (as expected) greatly reduced by the effect of viscosity.

drop impinging on a smooth aluminium plate (data by Stow & Hadfield 1981),
filled circles), or thick linen paper (data by Marmanis & Thoroddsen 1996, filled
triangles).

3.2. Transition to a viscous regime

All these results only hold if the impinging liquid has a low viscosity. Conversely, we
expect the spreading of a viscous drop to be limited by the effect of viscosity, which
yields (as shown in § 2.1) Dmax ∼ D0Re1/5. More generally, the maximum diameter
should be the small of that and the one given by (2.1). We can thus define an
impact number P ≡ We/Re

4/5
, and the inviscid case considered up to now implies a

small P (P < 1). This condition was indeed satisfied in the experiments (for which
P < 0.3). Using a viscous liquid with similar impact speeds and drop sizes should
modify dramatically the observed behaviour, which is shown in figure 8(b). There,
we compare to (2.1) the results obtained with a silicone oil of viscosity η = 300 mPa s
impinging on a smooth plastic surface (P > 50). The maximal deformation is found
to be much smaller (by a factor between 2 and 5) than predicted by (2.1) (drawn as
a solid line), with a much slower dependence on the velocity.

The viscous regime can be characterized by plotting the maximal deformation as
a function of the Reynolds number, as done in figure 9, using our data (silicone
oils of viscosity η = 20 and 300 mPa s) and Thoroddsen’s for three mixtures of water
and glycerol (Marmanis & Thoroddsen 1996). The law Dmax ∼ D0Re1/5 is drawn
as a solid line, and found to fit quite well the whole set of data. The transition
between the capillary and the viscous regime is shown in figure 10, where the dimen-
sionless viscous extension Dmax/(D0Re1/5) is plotted as a function of the impact
number P = We/Re

4/5
, for all our measurements. The transition between the two

regimes is very clean. It occurs around P = 1, as expected, since all the numerical
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Figure 9. Relative deformation of viscous drops, as a function of the Reynolds number Re
(Re ≡ ρD0U0/η), for silicone oils (�, η = 300 mPa s; �, η = 20mPa s), and results by Marmanis &
Thoroddsen (1996) for three viscous solutions of water and glycerol (open symbols). The points
are fitted well by the law Dmax ∼ D0Re1/5, drawn as a solid line.
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Figure 10. Dimensionless deformation of an impinging drop (where the maximal extension
Dmax is normalized by the maximal deformation in the viscous regime D0Re1/5), as a function

of the impact number P = We/Re4/5, for all our measurements. Two regimes are followed,
which successively correspond to the capillary regime (Eq. 2.1) and to the viscous one
(Dmax ∼ D0Re1/5). The transition occurs around P = 1.

coefficients were (experimentally) observed to be very close to unity. Since P scales as
ρ1/5D

1/5
0 U

6/5
0 η4/5σ −1, the capillary regime (P < 1) is likely to be observed at small velo-

cities, for small viscosities and large surface tension. On the other hand, the capillary
regime is found to be nearly independent of the drop size (since P varies as D

1/5
0 ).
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4. Conclusion
We address in this paper the question of the maximal extension of an impinging

drop, a question of practical importance since it defines the mark made on a solid
by such drops. In the limit of low viscosity and low wettability (water on a super-
hydrophobic surface), we found that the maximum diameter of the drop in its spread-
ing stage scales as D0We1/4, where We is the Weber number associated with the impact.
This law was found to hold on more wettable surfaces, and interpreted as resulting
from the equation of motion: during the shock the drop experiences an effective accel-
eration much more intense than the gravity field, which flattens it and fixes its extent.

The case of more viscous liquids was also analysed, and a criterion for predicting if
the spreading is limited by capillarity or by viscosity was derived. Questions remain,
the most interesting, in our opinion, being that energy is not conserved during the
shock (despite its inertial nature). This feature is also found in other interfacial flows
dominated by inertia (such as the bursting of a soap bubble (Culick 1960)), and we
showed qualitatively that a precise knowledge of the detail of the flow should help
in understanding this problem, i.e. how energy is redistributed during the shock. This
might define a stimulating program for future research in this field.
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measurements. We also thank C. Aigle, A. L. Biance, F. Charru, F. Chevy, C. Colin,
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Okumura, K., Chevy, F., Richard, D., Quéré, D. & Clanet, C. 2003 Europhys. Lett. 62, 237.

Onda, T., Shibuichi, S., Satoh, N. & Tsujii, K. 1996 Langmuir 12, 2125.

Rein, M. 1993 Fluid Dyn. Res. 61, 769.
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